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ABSTRACT 

This study presents an efficient super-pixel extraction al

gorithm with major contributions to the state-of-the-art in 

terms of accuracy and computational complexity. Segmen

tation accuracy is improved through convexity constrained 

geodesic distance utilization; while computational efficiency 

is achieved by replacing complete region processing with 

boundary adaptation idea. Starting from the uniformly dis

tributed rectangular equal-sized super-pixels, region bound

aries are adapted to intensity edges iteratively by assigning 

boundary pixels to the most similar neighboring super-pixels. 

At each iteration, super-pixel regions are updated and hence 

progressively converging to compact pixel groups. Experi

mental results with state-of-the-art comparisons, validate the 

performance of the proposed technique in terms of both accu

racy and speed. 

Index Terms- Super-pixel, image segmentation, con

vexity constraint 

1. INTRODUCTION 

Pixel representing of an image is often redundant due to the 

spatial similarity in the image. In order to reduce this redun

dancy, a preprocessing stage is introduced by Ren and Malik 

[1]. This method groups pixels into homogeneous image re

gions, called superpixels (SPs). The utilization of SPs has 

become important for image processing applications by pro

viding an efficient representation. SP regions on the image 

possess similar color and texture characteristics. This sup

ports the assumption that pixels in the same SP belong to the 

same semantic object or region. Inspiring from this idea, all 

the pixels in a SP can be assigned to specific models repre

senting motion, depth or segmentation structures. This repre

sentation replaces the use of pixels in various applications [2] 

[3]. Moreover, by the utilization of SPs for image representa

tion, the aim is to capture the inter-pixel details and preserve 

the local variations in the image. The proposed SP structure 

is also crucial for graph-based approaches. When the graph 

nodes are constructed with SPs instead of pixels, graph com

plexity and computation time would substantially reduce. 

SP extraction involves four main challenges. Firstly, a 

successful method should preserve local structure by con-

sidering and adapting to the local object and region bound

aries. Secondly, under-segmentation of the regions should 

be avoided for realizing an expressive image representa

tion. Thirdly, regular region identification is targeted with 

quasi-uniform SP regions. Finally, computational complexity 

should be kept at minimum. The first two challenges are re

lated with the local information encapsulation of the method 

that enforces adaptation of SP boundaries to the object bound

aries. Uniform localization and compactness are required to 

form regular grid structure among graph models with unbi

ased neighbor relations. This property has an influence on the 

precision and accuracy of graph based solutions, especially 

in image segmentation problem. Computational efficiency is 

also important for practical usability of the method. 

In this study, a novel and efficient SP extraction algorithm 

is presented addressing the four fundamental constraints. Lo

cal structure is preserved with the selected energy function; it 

is discussed in section 2.1. Adaptation on the object bound

ary is satisfied with a color based similarity measurement and 

the proposed distance metric takes care of the convexity con

straint by penalizing irregular shaped regions. Computational 

efficiency is achieved by processing only pixels on the region 

boundaries. 

The organization of the paper is as follows; related work 

is discussed in section 1.1, details of the proposed algorithm 

are presented in section 2. Section 3 is devoted to experimen

tal results and the final part 4 concludes the study with final 

remarks and restatement of the contributions. 

1.1. Related Work 

The main challenges discussed for SP extraction have been 

previously addressed by various methods. As provided in 

[4], these methods can be classified in two groups: Graph

based [5], [6] and gradient-based solutions [7], [4]. In graph

based approaches, SP extraction is achieved by partitioning 

the graph where nodes correspond to individual pixels and 

edge weights are assigned according to a cost function re

lating inter-pixel similarities. In [5], the graph is partitioned 

recursively, as in Normalized Cuts segmentation [8], in order 

to minimize a global cost function based on color and tex

ture cues until desired number of SPs is achieved. This ap

proach satisfies the compactness constraint required for SPs 



in order to provide efficient graph representation. However, 

it suffers from computational complexity. In [9], SP extrac

tion is improved in terms of complexity by grouping nodes 

of the graph via greedy decisions through pair-wise region 

comparisons on edge measures of minimum spanning-trees. 

This method, on the other hand, does not enforce a control 

on region compactness and number of SPs. In [10], a lattice 

structure is enforced by finding horizontal and vertical seams 

that cut the image optimally via graph cuts. The seams deter

mine the SP boundaries considering region compactness and 

total SP number. A recent study [6] proposes a novel method 

to generate 2D SPs and 3D super-voxels in an energy mini

mization framework utilizing graph cuts. It provides various 

controls on the SP structure and distribution; however, it suf

fers from computational complexity during the optimization 

stage. 

Gradient-based approaches start from initial seeds of 

rough SPs. Pixel groupings are refined iteratively, depending 

on the local similarities. Mean-Shift [7], which is one of the 

well known methods in image segmentation, is adapted for 

SP extraction by the use of recursive smoothing kernel over 

pixel feature space. The weakness of this method is that it 

does not have a control on the SP properties, such as compact

ness, distribution and total region number. In [11], an image 

is considered as a topographic structure and intensity gradient 

vectors are utilized to form pixel groups. This approach also 

lacks control on SP properties. TurboPixels [12] introduces 

geometric-flow over initial seeds which are considered as the 

starting points of the SPs. Level set method is exploited to up

date and refine SPs based on local image gradients. This ap

proach enables regular distribution of compact SPs with less 

complexity compared to graph-based approaches. In [13], 

geodesic distance [14] is exploited to iteratively group neigh

boring pixels starting from the initial seeds as proposed in 

TurboPixels [12]. Utilization of geodesic distance enables 

higher structure sensitivity compared to geometric-flow with 

almost similar complexity. Initial seed placement in [12]-[13] 

is refined in [15] by rectangular shaped initial SPs. Instead of 

geometric-flow, boundary pixels are re-assigned to SPs itera

tively, based on color similarity and spatial distance. In [4], a 

similar method is proposed, where all pixels are updated dur

ing the refinement rather than only boundary pixels. A recent 

study that aims to preserve the image topology is proposed 

in [16]. However, in this study quantitative experiments for 

evaluating the performance with the conventional metrics are 

missing, hence no comparison with this method has been pre

sented. 

2. PROPOSED METHOD 

This study addresses the main challenges towards a success

ful SP extraction method; quasi-uniform distribution on the 

image, adaptation on the object boundary, and fast execution 

capability. For this purpose, iterative boundary refinement ap-

proach in [15] is improved by constructing a general frame

work that utilizes color and locational similarity for pixel la

bel assignment. 

Proposed approach involves three main steps: Initializa

tion, boundary update and structure update, as illustrated in 

Figure 1. In the first step, the image is divided into equal

size regions according to the desired number of SPs. Each 

region initially starts with a rectangular shape and the centers 

are equally spaced among the image. The regular placement 

of SPs has been previously proposed where center pixels are 

considered as the seeds of pixel groups. Starting from these 

seeds, SPs are enlarged and the boundaries are constructed. 

However, this study approaches the problem from a different 

perspective. Instead of enlarging from the seed locations, SPs 

are refined through boundary pixels based on specific energy 

cost functions. The refinement is achieved iteratively through 

the boundary and structure update steps. 

In the boundary update step, a greedy search is conducted 

only on the SP boundaries. During the update, the cost func

tion relating similarity of the pixels to the corresponding SP 

candidates is minimized. This approach aims to keep SPs 

connected without any sub-detachment. Computational ef

ficiency is realized by performing a search between boundary 

pixels and neighboring SP candidates. Label assignment of 

each boundary pixel is conducted in an eight-neighborhood 

search. Pixel to SP assignment is performed according to the 

formula given in (1), where L(p) is the SP label of the pixel 

p, Si(P, Qi) is the similarity cost between the corresponding 

pixel p and SP Qi. N is the number of neighboring candidate 

SPs. Thus, starting from the initial SP distribution, bound

ary pixels are reassigned to the most similar neighboring SPs. 

After all the boundary pixels are visited, SP centers and mean 

color values are updated. 

(1) 

During the structure update, the SP model (i.e. mean color 

values and SP centers) is recalculated based on the added or 

removed boundary pixels. This update provides pixel groups 

to adapt changes along the boundaries and converge to com

pact SP models. The boundary and structure update steps are 

iterated several times until a stopping criteria is met. Termi

nation criteria can be set as a fixed number of iteration or it 

can be computed by the ratio of updated boundary pixels over 

the unchanged ones. 

The changes in SP boundaries at different stages of the it

eration are shown in Figure 2. SP boundaries are represented 

with blue lines, while yellow pixels denote the SP center lo

cations. The initial distribution of the square shaped SPs with 

a uniform spacing is given in Figure 2.a. A greedy search 

is conducted on the region boundary among the neighboring 

SPs with respect to the update rule in (1). An intermediate SP 

distribution is shown in Figure 2.b. It is observed that the SP 

boundaries, as well as center locations, show powerful adap

tation to local edges without losing their connectedness. At 
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Fig. 1. Algorithmic flow of the proposed SP generation algo

rithm 

.. . 
�IL .. . '. 
iii rtr: ..J.�' 
1"�".�Ti . "
I:! if' :.1 " �. � 
II;$;�': ': . 

(a) (b) (el 

Fig. 2. Boundary and SP center update at different iterations; 

a) 0 b) 4 and c) 10 

the final step in Figure 2.c, the iterative procedure is termi

nated due to small number of updated boundary pixels. 

2.1. Energy Function for SP Generation 

The optimization rule given in (1) updates the SP boundary. 

Each boundary pixel is visited and the cost of assigning each 

one to the neighboring SP is computed. The boundary pixel 

is assigned to the region that provides minimum cost. The 

proposed cost function used in this study is composed of two 

main energy terms (2). The first term relates the color sim

ilarity of the boundary pixel to its neighboring SPs. Second 

term defines the spatial distance of the pixel to the SP centers. 

E(p, Q) = A C(p, Q) + (1 - A)D(p, QC) (2) 

The term A in (2) is a trade off parameter to be tuned 

depending on the content and user selection. In this study 

the value of 0.5 is selected and used in all experiments. The 

first term in the cost function is used so that the pixels in the 

same SP region present a color similarity. In this study Lab 
color space is selected due to its perceptual uniformity. Color 

distance is computed over the individual color channels i as 

shown in (3). 

3 

C(p, Q) = 2) Pi - Qil2 (3) 
i=1 

The spatial distance between the boundary pixel P and 

the SP centroid QC is computed using the geodesic met

ric. Geodesic distance is defined as the length of the short

est path from P to QC, as given in (4) [17]. Suppose 

P = PI, P2, ..... Pn = QC is a path between the pixels PI and 
Pn = QC where Pi and Pi+! are connected neighbors. The 

(a) (h) 

Fig. 3. Illustration of the shortest (geodesic) path between the 

SP centroid and the boundary pixel 

path length l(P), as defined in (5), is the sum of individual 

neighbor distances dN(Pi, PHd between adjacent points in 

the path. 

(4) 

n-I 
l(P) = L dN(Pi,PHd (5) 

i=l 

For the computation of adjacent pixel distance dN, three 

color channel (Lab) distance is utilized (6). No significant 

performance difference has been observed in the selection of 
k, hence, it is selected as 1 in all the experiments due to its 

computational efficiency. 

3 

dN(p, q) = L (Pi - qi)k k = 1,2 (6) 
i=1 

Figure 3 illustrates the update procedure of a boundary 

pixel x on the junction of different SP neighborhoods. Neigh

boring SP centroids are marked with blue dots and the path 

printed in blue connecting the SP centroid to the boundary 

pixel indicates the shortest path. Computation of the shortest 

path from the boundary pixel to the SP centroid is performed 

via the shortest path algorithm provided by [18]. At each iter

ation, the shortest paths from the neighboring boundary pixels 

to the SP centroid are computed. Since the termination crite

ria for path computation is at the boundary, calculation of the 

shortest paths over the whole image is avoided. 

The value of A in (2) has a major impact on the SP size 

and shape. Visual results corresponding to different A values 

are presented in Figure 4. As the contribution of the distance 

term is increased, SPs converge to a quasi-uniform distribu

tion with increased convexity. If this ratio is further increased 

as in Figure 4.d, the resulting distribution becomes almost 

uniform and color homogeneity within SPs is violated. Ac

cording to the visual interpretation of Figure 4, equal color 

and spatial distance weights are utilized throughout the ex

periments. However, a different weight selection might be 

preferred depending on the application and content. 



Fig. 4. SP boundaries under different convexity weights (a) A=0.9, (b) A=0.5, (c) A=O.i 

3. EXPERIMENTAL RESULTS 

This section presents quantitative and qualitative results re

garding the proposed SP extraction method in comparison 

with the state-of-the-art. The known methods in the literature 

are selected for performance evaluations: Graph-based [9], 

TurboPixels [5], Structure Sensitive Geo [i3] and SLIC [4]. 

The performance of the extracted SPs is measured in terms of 

under-segmentation error, EUnSeg and boundary-recall statis

tics. Under-segmentation error is calculated by measuring 

the "bleeding" of the segment boundaries with respect to the 

ground truth (human) segmentation. Bleeding is measured by 

the formula in (7), where N corresponds to the number of pix

els, L is the number of ground truth segments Cl, and Sj is 

the extracted SP. In (7), pixel area of a SP intersecting with the 

Cl is computed. B is selected to be equal to 5% throughout 

this study in order to compensate for small errors in ground 

truth segmentation data. 

1 EUnSeg = 
N (t ( L Area(Sj)) - N) 

l=l [SjISjnGl>B] 
(7) 

EUnSeg measures how well the extracted SPs fit the 

ground truth segment boundaries. The experiments are con

ducted on the Berkeley segmentation database [i] with the 

human segmentation results over 300 different images with a 

resolution of 48ix321. All the presented under-segmentation 

errors are the average error over the whole dataset. The 

second error metric is the boundary recall and it is used to 

measure the percentage of overlap between the ground truth 

boundary pixels and the generated SP boundaries within one 

or two pixel neighborhood. Although this metric is itself in

conclusive, it is widely used and clearly gives an idea about 

the boundary precision of the SP extraction algorithm. Dif

ferent number of SPs are tested for performance evaluation 

to observe the performance of the algorithm. Measurements 

are performed on a 3.06GHz Intel Core i7 CPU with a 6 GB 

RAM. The source code of the proposed implementation will 

be made public in the authors' web page I. 

I Authors' Web page 
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Fig. 5. Bleeding error comparison for different number of SPs 
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Fig. 6. Boundary-recall ratio for various number of SPs in (a) 

2-pixel neighborhood, (b) i-pixel neighborhood 



5,5 
u '" 5 
i '"; 4,5 
E .;:; 4 c: o 

.� 3,5 
a. 
E 3 o u 'J 2,5 

1,5 +-----,-�-�-�____,-_-� 
0.25 0.50 16 

Image Size Ratio 

"'Geo+LAB 

-.-SLIC 

__ S5-Geo 

�Graph-based 

..... Turbo Pixel 
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in logarithmic scale 

3.1. Comparison against state-of-the-art Techniques 

The quantitative performance evaluation of the proposed 

method against the state-of-the-art is done using the bleed

ing and boundary-recall metrics. Moreover, generated bound

aries are also presented to have a visual evaluation. At this 

point, it is important to note that segmentation accuracy re

sults of the state-of-the-art techniques are taken from their 

related references. The bleeding error ratio of the generated 

SPs provided by Graph-based [9], TurboPixels [12], Structure 

Sensitive Geo [l3] and SLIC [4] and the proposed method is 

presented in Figure 5. It is observed that Structure Sensi

tive Geo algorithm [l3] has the best performance in terms of 

under-segmentation error, which is followed by our proposed 

method, especially when the number of SPs is sufficiently 

high (:2 500). SLIC is observed to perform better than the 

proposed method for smaller number of SPs. 

Boundary-recall ratio measures the amount of match be

tween the super pixel boundaries and the ground truth seg

mentation boundaries. This metric is prone to errors, since it 

is quite difficult to distinguish the actual boundaries in pixel 

precision. Hence, two versions of the metric are tested for 

measuring the ratio of boundary fit. The first one checks, 

whether the indicated SP boundary is within two-pixel neigh

borhood of the actual boundary. Similarly one-pixel neigh

borhood test is also conducted. According to the results pre

sented in Figure 6.a and Figure 6.b the proposed method out

performs the state-of-the-art techniques. 

Final quantitative comparison is conducted in terms of the 

computational times of the corresponding methods. In this 

case, the number of SPs is kept constant at 1000 and the im

ages are scaled up and down using bi-cubic interpolation for 

different ratios of the original size. Seven different scales of 

the original image are used for measuring average running 

time of the methods. According to the results presented in 

Fig. 8. SP boundaries (a) Proposed, (b) SLIC [4], (c) Turbo 

Pixel [12] 

logarithmic scale in Figure 7.a, TurboPixels [12] and Struc

ture Sensitive Geo [13] require orders of magnitude longer 

execution times compared to SLIC [4], Graph-based [9] and 

the proposed approach. 

Apart from the quantitative comparisons, SP boundaries 

with the proposed method is presented in Figure 8 and Fig

ure 9 for visual interpretation. It can be clearly observed that 

extracted SP boundaries fit object boundaries very well with 

inherent convexity and quasi-uniform distribution; and, hence 

providing competitive performance against the state-of-the

art. 

4. CONCLUSION 

This study presents a novel SP extraction method and im

proves the state-of-the-art results with respect to computa

tional efficiency and segmentation accuracy. SP regions are 

iteratively updated based on color and spatial similarity. The 

boundary adaptation idea and energy function selection are 

the two main contributions of the proposed method. Lab 
color space is chosen for its perceptual uniformity and has 

proven success in combination with the proposed geodesic 

distance. According to the extensive quantitative evaluation 

with state-of-the-art, it can be concluded that the proposed 

scheme yields a remarkable alternative for SP extraction with 

faster execution time and competitive segmentation perfor

mance. 



Fig. 9. (a) Original image, SP boundaries of (b)Proposed, (c)SS-Geo [17], and (d)Turbo Pixel [12] 
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